Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38615156

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent chronic liver disease that can progress to end-stage conditions with life-threatening complications, but no pharmacologic therapy has been approved. Drug delivery systems such as lipid nanocapsules (LNC) are very versatile platforms that are easy to produce and can induce the secretion of the native glucagon-like peptide 1 (GLP-1) when orally administered. GLP-1 analogs are currently being studied in clinical trials in the context of MASLD. Our nanosystem provides with increased levels of the native GLP-1 and increased plasmatic absorption of the encapsulated GLP-1 analog (semaglutide). Our goal was to use our strategy to demonstrate a better outcome and a greater impact on the metabolic syndrome associated with MASLD and on liver disease progression with our strategy compared with the oral marketed version of semaglutide, Rybelsus®. Therefore, we studied the effect of our nanocarriers on a dietary mouse model of MASLD, the Western diet model, during a daily chronic treatment of 4 weeks. Overall, the results showed a positive impact of semaglutide-loaded lipid nanocapsules towards the normalization of glucose homeostasis and insulin resistance. In the liver, there were no significant changes in lipid accumulation, but an improvement in markers related to inflammation was observed. Overall, our strategy had a positive trend on the metabolic syndrome and at reducing inflammation, mitigating the progression of the disease. Oral administration of the nanosystem was more efficient at preventing the progression of the disease to more severe states when compared to the administration of Rybelsus®, as a suspension.

2.
Transl Psychiatry ; 14(1): 29, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233378

RESUMO

The neuropeptide corticotropin-releasing factor (CRF) exerts a pivotal role in modulating neuronal activity in the mammalian brain. The effects of CRF exhibit notable variations, depending on factors such as duration of exposure, concentration, and anatomical location. In the CA1 region of the hippocampus, the impact of CRF is dichotomous: chronic exposure to CRF impairs synapse formation and dendritic integrity, whereas brief exposure enhances synapse formation and plasticity. In the current study, we demonstrate long-term effects of acute CRF on the density and stability of mature mushroom spines ex vivo. We establish that both CRF receptors are present in this hippocampal region, and we pinpoint their precise subcellular localization within synapses by electron microscopy. Furthermore, both in vivo and ex vivo data collectively demonstrate that a transient surge of CRF in the CA1 activates the cyclin-dependent kinase 5 (Cdk5)-pathway. This activation leads to a notable augmentation in CRF-dependent spine formation. Overall, these data suggest that upon acute release of CRF in the CA1-SR synapse, both CRF-Rs can be activated and promote synaptic plasticity via activating different downstream signaling pathways, such as the Cdk5-pathway.


Assuntos
Hormônio Liberador da Corticotropina , Espinhas Dendríticas , Animais , Hormônio Liberador da Corticotropina/metabolismo , Espinhas Dendríticas/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/farmacologia , Hipocampo/metabolismo , Receptores de Hormônio Liberador da Corticotropina , Sinapses/metabolismo , Mamíferos/metabolismo
3.
J Clin Invest ; 134(4)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175705

RESUMO

Mutations in the N-terminal WD40 domain of coatomer protein complex subunit α (COPA) cause a type I interferonopathy, typically characterized by alveolar hemorrhage, arthritis, and nephritis. We described 3 heterozygous mutations in the C-terminal domain (CTD) of COPA (p.C1013S, p.R1058C, and p.R1142X) in 6 children from 3 unrelated families with a similar syndrome of autoinflammation and autoimmunity. We showed that these CTD COPA mutations disrupt the integrity and the function of coat protein complex I (COPI). In COPAR1142X and COPAR1058C fibroblasts, we demonstrated that COPI dysfunction causes both an anterograde ER-to-Golgi and a retrograde Golgi-to-ER trafficking defect. The disturbed intracellular trafficking resulted in a cGAS/STING-dependent upregulation of the type I IFN signaling in patients and patient-derived cell lines, albeit through a distinct molecular mechanism in comparison with mutations in the WD40 domain of COPA. We showed that CTD COPA mutations induce an activation of ER stress and NF-κB signaling in patient-derived primary cell lines. These results demonstrate the importance of the integrity of the CTD of COPA for COPI function and homeostatic intracellular trafficking, essential to ER homeostasis. CTD COPA mutations result in disease by increased ER stress, disturbed intracellular transport, and increased proinflammatory signaling.


Assuntos
Complexo I de Proteína do Envoltório , Proteína Coatomer , Criança , Humanos , Proteína Coatomer/genética , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Mutação , Síndrome , Complexo de Golgi/genética , Complexo de Golgi/metabolismo
4.
Neuron ; 111(9): 1402-1422.e13, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36827984

RESUMO

Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal survival in a Parkinson disease-relevant fashion. Mutations in the disordered loop, including a Parkinson disease-risk mutation, render EndoA insensitive to neuronal stimulation and affect protein dynamics: when EndoA is more flexible, its mobility in membrane nanodomains increases, making it available for autophagosome formation. Conversely, when EndoA is more rigid, its mobility reduces, blocking stimulation-induced autophagy. Balanced stimulation-induced autophagy is required for dopagminergic neuron survival, and a variant in the human ENDOA1 disordered loop conferring risk to Parkinson disease also blocks nanodomain protein mobility and autophagy both in vivo and in human-induced dopaminergic neurons. Thus, we reveal a mechanism that neurons use to connect neuronal activity to local autophagy and that is critical for neuronal survival.


Assuntos
Doença de Parkinson , Animais , Humanos , Autofagia/genética , Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila/metabolismo , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
5.
Science ; 379(6632): eabn4705, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36705539

RESUMO

Neuronal development in the human cerebral cortex is considerably prolonged compared with that of other mammals. We explored whether mitochondria influence the species-specific timing of cortical neuron maturation. By comparing human and mouse cortical neuronal maturation at high temporal and cell resolution, we found a slower mitochondria development in human cortical neurons compared with that in the mouse, together with lower mitochondria metabolic activity, particularly that of oxidative phosphorylation. Stimulation of mitochondria metabolism in human neurons resulted in accelerated development in vitro and in vivo, leading to maturation of cells weeks ahead of time, whereas its inhibition in mouse neurons led to decreased rates of maturation. Mitochondria are thus important regulators of the pace of neuronal development underlying human-specific brain neoteny.


Assuntos
Mitocôndrias , Neurogênese , Neurônios , Animais , Humanos , Camundongos , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Metabolismo Energético , Mitocôndrias/metabolismo , Neurônios/metabolismo
6.
Mol Neurobiol ; 59(6): 3414-3430, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35320455

RESUMO

Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy, with currently no effective treatment or cure. CMT1A is caused by a duplication of the PMP22 gene, which leads to Schwann cell differentiation defects and dysmyelination of the peripheral nerves. The epigenetic regulator histone deacetylase 3 (HDAC3) has been shown to negatively regulate myelination as well as its associated signaling pathways, PI3K-AKT and MAPK-ERK. We showed that these signaling pathways are indeed downregulated in the C3-PMP22 mouse model, similar to what has been shown in the CMT1A rat model. We confirmed that early postnatal defects are present in the peripheral nerves of the C3-PMP22 mouse model, which led to a progressive reduction in axon caliber size and myelination. The aim of this study was to investigate whether pharmacological HDAC3 inhibition could be a valuable therapeutic approach for this CMT1A mouse model. We demonstrated that early treatment of CMT1A mice with the selective HDAC3 inhibitor RGFP966 increased myelination and myelin g-ratios, which was associated with improved electrophysiological recordings. However, a high dose of RGFP966 caused a decline in rotarod performance and a decline in overall grip strength. Additionally, macrophage presence in peripheral nerves was increased in RGFP966 treated CMT1A mice. We conclude that HDAC3 does not only play a role in regulating myelination but is also important in the neuroimmune modulation. Overall, our results indicate that correct dosing of HDAC3 inhibitors is of crucial importance if translated to a clinical setting for demyelinating forms of CMT or other neurological disorders.


Assuntos
Doença de Charcot-Marie-Tooth , Doenças Desmielinizantes , Animais , Doença de Charcot-Marie-Tooth/genética , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Histona Desacetilases/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Células de Schwann/metabolismo
7.
iScience ; 24(12): 103460, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34888501

RESUMO

Deficiency of the serine hydrolase prolyl endopeptidase-like (PREPL) causes a recessive metabolic disorder characterized by neonatal hypotonia, feeding difficulties, and growth hormone deficiency. The pathophysiology of PREPL deficiency and the physiological substrates of PREPL remain largely unknown. In this study, we connect PREPL with mitochondrial gene expression and oxidative phosphorylation by analyzing its protein interactors. We demonstrate that the long PREPLL isoform localizes to mitochondria, whereas PREPLS remains cytosolic. Prepl KO mice showed reduced mitochondrial complex activities and disrupted mitochondrial gene expression. Furthermore, mitochondrial ultrastructure was abnormal in a PREPL-deficient patient and Prepl KO mice. In addition, we reveal that PREPL has (thio)esterase activity and inhibition of PREPL by Palmostatin M suggests a depalmitoylating function. We subsequently determined the crystal structure of PREPL, thereby providing insight into the mechanism of action. Taken together, PREPL is a (thio)esterase rather than a peptidase and PREPLL is involved in mitochondrial homeostasis.

8.
Transl Psychiatry ; 11(1): 378, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234103

RESUMO

Biological responses to stress are complex and highly conserved. Corticotropin-releasing factor (CRF) plays a central role in regulating these lifesaving physiological responses to stress. We show that, in mice, CRF rapidly changes Schaffer Collateral (SC) input into hippocampal CA1 pyramidal cells (PC) by modulating both functional and structural aspects of these synapses. Host exposure to acute stress, in vivo CRF injection, and ex vivo CRF application all result in fast de novo formation and remodeling of existing dendritic spines. Functionally, CRF leads to a rapid increase in synaptic strength of SC input into CA1 neurons, e.g., increase in spontaneous neurotransmitter release, paired-pulse facilitation, and repetitive excitability and improves synaptic plasticity: long-term potentiation (LTP) and long-term depression (LTD). In line with the changes in synaptic function, CRF increases the number of presynaptic vesicles, induces redistribution of vesicles towards the active zone, increases active zone size, and improves the alignment of the pre- and postsynaptic compartments. Therefore, CRF rapidly enhances synaptic communication in the hippocampus, potentially playing a crucial role in the enhanced memory consolidation in acute stress.


Assuntos
Hormônio Liberador da Corticotropina , Células Piramidais , Animais , Hipocampo , Potenciação de Longa Duração , Camundongos , Sinapses , Transmissão Sináptica
9.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34233164

RESUMO

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Germinação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Príons/metabolismo , Sementes/crescimento & desenvolvimento , Água/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestrutura , Desidratação , Imageamento Tridimensional , Peptídeos e Proteínas de Sinalização Intercelular/química , Mutação/genética , Dormência de Plantas , Plantas Geneticamente Modificadas , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Sementes/ultraestrutura
10.
EMBO J ; 40(17): e106914, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34313336

RESUMO

The interphase nuclear envelope (NE) is extensively remodeled during nuclear pore complex (NPC) insertion. How this remodeling occurs and why it requires Torsin ATPases, which also regulate lipid metabolism, remains poorly understood. Here, we show that Drosophila Torsin (dTorsin) affects lipid metabolism via the NEP1R1-CTDNEP1 phosphatase and the Lipin phosphatidic acid (PA) phosphatase. This includes that Torsins remove NEP1R1-CTDNEP1 from the NE in fly and mouse cells, leading to subsequent Lipin exclusion from the nucleus. NEP1R1-CTDNEP1 downregulation also restores nuclear pore membrane fusion in post-mitotic dTorsinKO fat body cells. However, dTorsin-associated nuclear pore defects do not correlate with lipidomic abnormalities and are not resolved by silencing of Lipin. Further testing confirmed that membrane fusion continues in cells with hyperactivated Lipin. It also led to the surprising finding that excessive PA metabolism inhibits recruitment of the inner ring complex Nup35 subunit, resulting in elongated channel-like structures in place of mature nuclear pores. We conclude that the NEP1R1-CTDNEP1 phosphatase affects interphase NPC biogenesis by lipid-dependent and lipid-independent mechanisms, explaining some of the pleiotropic effects of Torsins.


Assuntos
Proteínas de Drosophila/metabolismo , Poro Nuclear/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Corpo Adiposo/citologia , Corpo Adiposo/metabolismo , Metabolismo dos Lipídeos , Fusão de Membrana , Fosfoproteínas Fosfatases/genética
11.
BMC Biol ; 19(1): 152, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330271

RESUMO

BACKGROUND: Array tomography (AT) is a high-resolution imaging method to resolve fine details at the organelle level and has the advantage that it can provide 3D volumes to show the tissue context. AT can be carried out in a correlative way, combing light and electron microscopy (LM, EM) techniques. However, the correlation between modalities can be a challenge and delineating specific regions of interest in consecutive sections can be time-consuming. Integrated light and electron microscopes (iLEMs) offer the possibility to provide well-correlated images and may pose an ideal solution for correlative AT. Here, we report a workflow to automate navigation between regions of interest. RESULTS: We use a targeted approach that allows imaging specific tissue features, like organelles, cell processes, and nuclei at different scales to enable fast, directly correlated in situ AT using an integrated light and electron microscope (iLEM-AT). Our workflow is based on the detection of section boundaries on an initial transmitted light acquisition that serves as a reference space to compensate for changes in shape between sections, and we apply a stepwise refinement of localizations as the magnification increases from LM to EM. With minimal user interaction, this enables autonomous and speedy acquisition of regions containing cells and cellular organelles of interest correlated across different magnifications for LM and EM modalities, providing a more efficient way to obtain 3D images. We provide a proof of concept of our approach and the developed software tools using both Golgi neuronal impregnation staining and fluorescently labeled protein condensates in cells. CONCLUSIONS: Our method facilitates tracing and reconstructing cellular structures over multiple sections, is targeted at high resolution ILEMs, and can be integrated into existing devices, both commercial and custom-built systems.


Assuntos
Imageamento Tridimensional , Tomografia , Coloração e Rotulagem , Tomografia Computadorizada por Raios X , Fluxo de Trabalho
12.
Methods Cell Biol ; 162: 205-221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33707013

RESUMO

Many areas of biology have benefited from advances in light microscopy (LM). However, one limitation of the LM approach is that numerous critically important aspects of subcellular machineries are well beyond the resolution of conventional LM. For studying these, electron microscopy (EM) remains the technique of choice to visualize and identify macromolecules at the ultrastructural level. The most powerful approach is combining both techniques, LM and EM (i.e., to apply correlative light/electron microscopy, CLEM) to image exactly the same region of interest. This combination allows, for example, to immuno-localize proteins by LM and then to visualize the ultrastructural context of the same region of the sample. However, the identification and correlation of the regions of interest (ROIs) at the levels of LM and EM remains a major challenge, mostly due to the difficulties with correlation along the Z-axis for both modalities. In this chapter, we address this difficulty and describe an approach for performing CLEM in tissue samples using marks from near-infrared branding as indicators of a ROI, and then using serial block face-scanning electron microscopy (SBF-SEM) to identify and approach this ROI. Once a ROI has been approached, serial sections are collected on grids for high-resolution imaging by transmission EM, and subsequent correlation with LM images showing labeled proteins.


Assuntos
Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
13.
Front Cell Dev Biol ; 9: 737621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977003

RESUMO

Life science research often needs to define where molecules are located within the complex environment of a cell or tissue. Genetically encoded fluorescent proteins and or fluorescence affinity-labeling are the go-to methods. Although recent fluorescent microscopy methods can provide localization of fluorescent molecules with relatively high resolution, an ultrastructural context is missing. This is solved by imaging a region of interest with correlative light and electron microscopy (CLEM). We have adopted a protocol that preserves both genetically-encoded and antibody-derived fluorescent signals in resin-embedded cell and tissue samples and provides high-resolution electron microscopy imaging of the same thin section. This method is particularly suitable for dedicated CLEM instruments that combine fluorescence and electron microscopy optics. In addition, we optimized scanning EM imaging parameters for samples of varying thicknesses. These protocols will enable rapid acquisition of CLEM information from samples and can be adapted for three-dimensional EM.

14.
Diabetes ; 70(2): 492-503, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33277337

RESUMO

FURIN is a proprotein convertase (PC) responsible for proteolytic activation of a wide array of precursor proteins within the secretory pathway. It maps to the PRC1 locus, a type 2 diabetes susceptibility locus, but its specific role in pancreatic ß-cells is largely unknown. The aim of this study was to determine the role of FURIN in glucose homeostasis. We show that FURIN is highly expressed in human islets, whereas PCs that potentially could provide redundancy are expressed at considerably lower levels. ß-cell-specific Furin knockout (ßFurKO) mice are glucose intolerant as a result of smaller islets with lower insulin content and abnormal dense-core secretory granule morphology. mRNA expression analysis and differential proteomics on ßFurKO islets revealed activation of activating transcription factor 4 (ATF4), which was mediated by mammalian target of rapamycin C1 (mTORC1). ßFurKO cells show impaired cleavage or shedding of vacuolar-type ATPase (V-ATPase) subunits Ac45 and prorenin receptor, respectively, and impaired lysosomal acidification. Blocking V-ATPase pharmacologically in ß-cells increased mTORC1 activity, suggesting involvement of the V-ATPase proton pump in the phenotype. Taken together, these results suggest a model of mTORC1-ATF4 hyperactivation and impaired lysosomal acidification in ß-cells lacking Furin, causing ß-cell dysfunction.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Furina/metabolismo , Células Secretoras de Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Furina/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia
15.
Nature ; 584(7820): 268-273, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32728211

RESUMO

The ability of the skin to grow in response to stretching has been exploited in reconstructive surgery1. Although the response of epidermal cells to stretching has been studied in vitro2,3, it remains unclear how mechanical forces affect their behaviour in vivo. Here we develop a mouse model in which the consequences of stretching on skin epidermis can be studied at single-cell resolution. Using a multidisciplinary approach that combines clonal analysis with quantitative modelling and single-cell RNA sequencing, we show that stretching induces skin expansion by creating a transient bias in the renewal activity of epidermal stem cells, while a second subpopulation of basal progenitors remains committed to differentiation. Transcriptional and chromatin profiling identifies how cell states and gene-regulatory networks are modulated by stretching. Using pharmacological inhibitors and mouse mutants, we define the step-by-step mechanisms that control stretch-mediated tissue expansion at single-cell resolution in vivo.


Assuntos
Mecanotransdução Celular/fisiologia , Análise de Célula Única , Pele/citologia , Pele/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Cromatina/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Células Clonais/citologia , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Mecanotransdução Celular/efeitos dos fármacos , Mecanotransdução Celular/genética , Camundongos , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , RNA Mensageiro/genética , RNA-Seq , Pele/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas de Sinalização YAP
16.
Nat Commun ; 10(1): 4147, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515480

RESUMO

Energy metabolism has been repeatedly linked to amyotrophic lateral sclerosis (ALS). Yet, motor neuron (MN) metabolism remains poorly studied and it is unknown if ALS MNs differ metabolically from healthy MNs. To address this question, we first performed a metabolic characterization of induced pluripotent stem cells (iPSCs) versus iPSC-derived MNs and subsequently compared MNs from ALS patients carrying FUS mutations to their CRISPR/Cas9-corrected counterparts. We discovered that human iPSCs undergo a lactate oxidation-fuelled prooxidative metabolic switch when they differentiate into functional MNs. Simultaneously, they rewire metabolic routes to import pyruvate into the TCA cycle in an energy substrate specific way. By comparing patient-derived MNs and their isogenic controls, we show that ALS-causing mutations in FUS did not affect glycolytic or mitochondrial energy metabolism of human MNs in vitro. These data show that metabolic dysfunction is not the underlying cause of the ALS-related phenotypes previously observed in these MNs.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Diferenciação Celular , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação/genética , Proteína FUS de Ligação a RNA/genética , Estudos de Casos e Controles , Respiração Celular , Glucose/metabolismo , Glicólise , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ácido Láctico/metabolismo , Análise do Fluxo Metabólico , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios Motores/ultraestrutura , Proteína FUS de Ligação a RNA/metabolismo
17.
Sci Rep ; 9(1): 130, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644431

RESUMO

Analysis of neuronal arborization and connections is a powerful tool in fundamental and clinical neuroscience. Changes in neuronal morphology are central to brain development and plasticity and are associated with numerous diseases. Golgi staining is a classical technique based on a deposition of metal precipitate in a random set of neurons. Despite their versatility, Golgi methods have limitations that largely precluded their use in advanced microscopy. We combined Golgi staining with fluorescent labeling and tissue clearing techniques in an Alzheimer's disease model. We further applied 3D electron microscopy to visualize entire Golgi-stained neurons, while preserving ultrastructural details of stained cells, optimized Golgi staining for use with block-face scanning electron microscopy, and developed an algorithm for semi-automated neuronal tracing of cells displaying complex staining patterns. Our method will find use in fundamental neuroscience and the study of neuronal morphology in disease.


Assuntos
Imageamento Tridimensional/métodos , Neurônios/citologia , Coloração e Rotulagem/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Ouro , Camundongos , Microscopia Eletrônica de Varredura/métodos , Neurônios/ultraestrutura , Análise de Célula Única/métodos , Coloração e Rotulagem/normas
18.
J Histochem Cytochem ; 67(5): 351-360, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30624131

RESUMO

Modern electron microscopy offers a wide variety of tools to investigate the ultrastructural organization of cells and tissues and to accurately pinpoint intracellular localizations of macromolecules of interest. New volumetric electron microscopy techniques and new instrumentation provide unique opportunities for high-throughput analysis of comparatively large volumes of tissue and their complete reconstitution in three-dimensional (3D) electron microscopy. However, due to a variety of technical issues such as the limited penetration of label into the tissue, low antigen preservation, substantial electron density of secondary detection reagents, and many others, the adaptation of immuno-detection techniques for use with such 3D imaging methods as focused ion beam-scanning electron microscopy (FIB-SEM) has been challenging. Here, we describe a sample preparation method for 3D FIB-SEM, which results in an optimal preservation and staining of ultrastructural details at a resolution necessary for tracing immunolabeled neuronal structures and detailed reconstruction of synapses. This technique is applicable to neuronal and non-neuronal cells, tissues, and a wide variety of antigens.


Assuntos
Imageamento Tridimensional/métodos , Imuno-Histoquímica/métodos , Microscopia Eletrônica de Varredura/métodos , Peroxidase/análise , Animais , Encéfalo/citologia , Encéfalo/ultraestrutura , Ouro/química , Masculino , Camundongos Endogâmicos C57BL , Células de Purkinje/citologia , Células de Purkinje/ultraestrutura , Prata/química , Sinapses/ultraestrutura
19.
Neuron ; 99(2): 329-344.e7, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29983322

RESUMO

Pyramidal neurons express rich repertoires of leucine-rich repeat (LRR)-containing adhesion molecules with similar synaptogenic activity in culture. The in vivo relevance of this molecular diversity is unclear. We show that hippocampal CA1 pyramidal neurons express multiple synaptogenic LRR proteins that differentially distribute to the major excitatory inputs on their apical dendrites. At Schaffer collateral (SC) inputs, FLRT2, LRRTM1, and Slitrk1 are postsynaptically localized and differentially regulate synaptic structure and function. FLRT2 controls spine density, whereas LRRTM1 and Slitrk1 exert opposing effects on synaptic vesicle distribution at the active zone. All LRR proteins differentially affect synaptic transmission, and their combinatorial loss results in a cumulative phenotype. At temporoammonic (TA) inputs, LRRTM1 is absent; FLRT2 similarly controls functional synapse number, whereas Slitrk1 function diverges to regulate postsynaptic AMPA receptor density. Thus, LRR proteins differentially control synaptic architecture and function and act in input-specific combinations and a context-dependent manner to specify synaptic properties.


Assuntos
Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Sinapses/fisiologia , Animais , Células Cultivadas , Técnicas de Cocultura , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/ultraestrutura , Proteínas de Membrana/análise , Proteínas de Membrana/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso , Moléculas de Adesão de Célula Nervosa/análise , Moléculas de Adesão de Célula Nervosa/ultraestrutura , Ratos , Ratos Wistar , Sinapses/química , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia
20.
Elife ; 72018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29809156

RESUMO

Mutations in the genes for PINK1 and parkin cause Parkinson's disease. PINK1 and parkin cooperate in the selective autophagic degradation of damaged mitochondria (mitophagy) in cultured cells. However, evidence for their role in mitophagy in vivo is still scarce. Here, we generated a Drosophila model expressing the mitophagy probe mt-Keima. Using live mt-Keima imaging and correlative light and electron microscopy (CLEM), we show that mitophagy occurs in muscle cells and dopaminergic neurons in vivo, even in the absence of exogenous mitochondrial toxins. Mitophagy increases with aging, and this age-dependent rise is abrogated by PINK1 or parkin deficiency. Knockdown of the Drosophila homologues of the deubiquitinases USP15 and, to a lesser extent, USP30, rescues mitophagy in the parkin-deficient flies. These data demonstrate a crucial role for parkin and PINK1 in age-dependent mitophagy in Drosophila in vivo.


Assuntos
Envelhecimento , Autofagia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Mitocôndrias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA